Reconstructing Householder Vectors from TSQR

Grey Ballard, James Demmel, Laura Grigori, Mathias Jacquelin, Hong Diep Nguyen and Edgar Solomonik

SIAM Conference on Parallel Processing and Scientific Computing

February 19, 2014

Summary

- Householder QR is not fast enough for tall-skinny matrices
 - blocked algorithms can be bottlenecked by panel factorizations
 - applying (aggregated) Householder vectors = matrix multiplication

- Tall-Skinny QR (TSQR) [DGHL12] is faster for tall-skinny matrices
 - applying the implicit orthogonal matrix is more complicated

- We can get the best of both worlds at little extra cost
 - use TSQR but reconstruct the Householder vector representation
 - good for performance and software engineering

Key Idea

Compute a QR decomposition using Householder vectors*:

$$A = QR = (I - YTY_1^T)R$$

$$A \quad Q \quad R \quad I \quad Y \quad T \quad Y_1^T \quad R$$

 $^*I - YTY_1^T$ known as compact WY representation

Compute a QR decomposition using Householder vectors*:

$$A = QR = (I - YTY_1^T)R$$

Re-arrange the equation and we have an LU decomposition:

$$A - R = Y \cdot (-TY_1^T R)$$

* $I - YTY_1^T$ known as compact WY representation

Householder QR (HhQR)

Blocked Householder QR works by repeating:

- panel factorization (tall-skinny QR decomposition)
- trailing matrix update (application of orthogonal factor)

Householder vectors computed and applied one at a time

$$I - \tau y y^T$$

(two parallel reductions per column)

Householder vectors aggregated by computing triangular matrix *T*

$$I - YTY^T$$

(application = matrix multiplications)

Tall-Skinny QR (TSQR)

Communication-Avoiding QR (CAQR)

CAQR uses TSQR for panel factorization and applies the update using implicit tree structure

Yamamoto's Idea

- Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR but offload the trailing matrix update to a GPU
- To make CAQR's trailing matrix update more like matrix multiplication, his idea is to convert implicit tree into compact WY-like representation

Yamamoto's Idea

- Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR but offload the trailing matrix update to a GPU
- To make CAQR's trailing matrix update more like matrix multiplication, his idea is to convert implicit tree into compact WY-like representation

Grey Ballard SIAM PP14

Yamamoto's Algorithm

- Perform TSQR
- Form Q explicitly (tall-skinny orthonormal factor)
- **3** Set W = Q I
- **3** Set $S = (I Q_1)^{-1}$

$$I - WSW^{T} = I - \begin{bmatrix} Q_{1} - I \\ Q_{2} \end{bmatrix} \begin{bmatrix} I - Q_{1} \end{bmatrix}^{-1} \begin{bmatrix} (Q_{1} - I)^{T} & Q_{2}^{T} \end{bmatrix}$$

$$I \qquad W \qquad S \qquad W^{T}$$

How is Q formed?

Yamamoto's Algorithm

- Perform TSQR
- Form Q explicitly (tall-skinny orthonormal factor)
- **3** Set W = Q I

$$I - WSW^{T} = I - \begin{bmatrix} Q_1 - I \\ Q_2 \end{bmatrix} \begin{bmatrix} I - Q_1 \end{bmatrix}^{-1} \begin{bmatrix} (Q_1 - I)^T & Q_2^T \end{bmatrix}$$

$$I \qquad W \quad S \quad W^{T}$$

Reconstructing Householder Vectors (TSQR-HR)

With a little more effort, we can obtain the compact WY representation:

- Perform TSQR
- Form Q explicitly (tall-skinny orthonormal factor)
- **3** Perform LU decomposition: Q I = LU
- **3** Set $T = -UY_1^{-T}$

$$I - YTY^{T} = I - \begin{bmatrix} Y_{1} \\ Y_{2} \end{bmatrix} \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} Y_{1}^{T} & Y_{2}^{T} \end{bmatrix}$$

$$I \qquad Y \quad T \quad Y^{T}$$

Why form Q?

Cheaper approach based on $A - R = Y \cdot (-TY_1^T R)$:

- Perform TSQR
- 2 Perform LU decomposition: A R = LU
- Set Y = L
- Set $T = -UR^{-1}Y_1^{-T}$ (or compute T from Y)

Why form Q?

Cheaper approach based on $A - R = Y \cdot (-TY_1^T R)$:

- Perform TSQR
- 2 Perform LU decomposition: A R = LU
- \odot Set Y = L
- Set $T = -UR^{-1}Y_1^{-T}$ (or compute T from Y)

This approach is similar to computing *R* using TSQR and *Q* using Householder QR

- if A is well-conditioned, works fine
- if A is low-rank, QR decomposition is not unique
- if A is ill-conditioned, R matrix is sensitive to roundoff

What about pivoting in LU?

Third step in reconstructing Householder vectors:

- Perform LU decomposition: Q I = LU
 - what if Q I is singular?

What about pivoting in LU?

Third step in reconstructing Householder vectors:

- Perform LU decomposition: Q I = LU
 - what if Q I is singular?

Actually, we need to make a sign choice:

- Perform LU decomposition: Q Sgn = LU
 - Sgn matrix corresponds to sign choice in Householder QR
 - guarantees Q Sgn is nonsingular
 - guarantees maximum element on the diagonal (no pivoting)

What about pivoting in LU?

Third step in reconstructing Householder vectors:

- Perform LU decomposition: Q I = LU
 - what if Q I is singular?

Actually, we need to make a sign choice:

- Perform LU decomposition: Q Sgn = LU
 - Sgn matrix corresponds to sign choice in Householder QR
 - guarantees *Q Sgn* is nonsingular
 - guarantees maximum element on the diagonal (no pivoting)

No pivoting makes LU of tall-skinny matrix very easy

LU of top block followed by triangular solve for all other rows

Costs of Householder Reconstruction

Householder Reconstruction

Let A be $n \times b$

Perform TSQR

 $2nb^2$ flops, one QR reduction of size $b^2/2$

Form Q

 $2nb^2$ flops, one QR reduction of size $b^2/2$

③ LU(*Q* − *Sgn*)

 nb^2 flops, one broadcast of size $b^2/2$

 $O(b^3)$ flops

Costs of Householder Reconstruction

Householder Reconstruction

Let A be $n \times b$

- Perform TSQR
- Form Q
- LU(Q Sgn)

 $2nb^2$ flops, one QR reduction of size $b^2/2$

 $2nb^2$ flops, one QR reduction of size $b^2/2$ nb^2 flops, one broadcast of size $b^2/2$

 $O(b^3)$ flops

Alternative Algorithms

- TSQR
- HhQR (and form T)
- Yamamoto's

 $2nb^2$ flops, one QR reduction of size $b^2/2$ $3nb^2$ flops, 2b reductions of size O(b)

 $4nb^2$ flops, two QR reductions of size $b^2/2$

Costs of Householder Reconstruction

Householder Reconstruction

Let A be $n \times b$

- Perform TSQR
- $2nb^2$ flops, one QR reduction of size $b^2/2$ $2nb^2$ flops, one QR reduction of size $b^2/2$

Form Q

 nb^2 flops, one broadcast of size $b^2/2$

- LU(*Q Sgn*)Set *Y* = *L*

 $O(b^3)$ flops

Alternative Algorithms

TSQR

- $2nb^2$ flops, one QR reduction of size $b^2/2$ $3nb^2$ flops, 2b reductions of size O(b)
- HhQR (and form T)
- $4nb^2$ flops, two QR reductions of size $b^2/2$

Yamamoto's

For square matrices, flop costs of panel factorization are lower order: $O(n^2b)$

Performance for Tall-Skinny Matrices

Performance for Tall-Skinny Matrices

Performance for Tall-Skinny Matrices

Binary-Apply CAQR

Scatter-Apply CAQR

Similar to performing an all-reduce by reduce-scatter followed by all-gather

Two-Level Aggregation

Block size trades off time spent in panel factorizations with efficiency of matrix multiplications

Solution:

 Use another level of compact WY blocking

Allow for larger local matrix multiplications

(Can't use with CAQR)

Conclusions

- Householder reconstruction provides best of both worlds
 - latency-avoiding panel factorization
 - matrix multiplication trailing matrix updates
 - backwards compatibility for performance portability
- Scatter-apply technique improves CAQR trailing matrix update
- Two-level aggregation most important optimization on Hopper
- We expect Householder reconstruction to become more valuable as relative latency and synchronization costs increase

Thanks!

For full details:

Reconstructing Householder Vectors from TSQR

Grey Ballard, James Demmel, Laura Grigori, Mathias Jacquelin, Hong Diep Nguyen and Edgar Solomonik

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/ EECS-2013-175.html

gmballa@sandia.gov

References I

L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

ScaLAPACK Users' Guide.

SIAM, Philadelphia, PA, USA, May 1997.

Also available from http://www.netlib.org/scalapack/.

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.

Communication-optimal parallel and sequential QR and LU factorizations.

SIAM Journal on Scientific Computing, 34(1):A206–A239, 2012.

Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and Nichols A. Romero.

Elemental: A new framework for distributed memory dense matrix computations.

ACM Trans. Math. Softw., 39(2):13:1–13:24, February 2013.

Numerical Stability

Theorem

Let \hat{R} be the computed upper triangular factor of $m \times b$ matrix A obtained via the TSQR algorithm with p processors using a binary tree (assuming $m/p \ge b$), and let $\tilde{Q} = I - \tilde{Y}\tilde{T}\tilde{Y}_1^T$ and $\tilde{R} = S\hat{R}$ where \tilde{Y} , \tilde{T} , and S are the computed factors obtained from Householder reconstruction. Then

$$||A - \tilde{Q}\tilde{R}||_F \le F_1(m, b, p, \varepsilon)||A||_F$$

and

$$\|I - \tilde{Q}^T \tilde{Q}\|_F \leq F_2(m, b, p, \varepsilon)$$

where $F_1, F_2 = O\left(\left(b^{3/2}(m/p) + b^{5/2}\log p + b^3\right)\epsilon\right)$ for $b(m/p)\epsilon \ll 1$.

Numerical Experiments for Tall-Skinny Matrices

ρ	κ	$\ A - QR\ _2$	$ I-Q^TQ _2$
1e-01	5.1e+02	2.2e-15	9.3e-15
1e-03	5.0e+04	2.2e-15	8.4e-15
1e-05	5.1e+06	2.3e-15	8.7e-15
1e-07	5.0e+08	2.4e-15	1.1e-14
1e-09	5.0e+10	2.3e-15	9.9e-15
1e-11	4.9e+12	2.5e-15	1.0e-14
1e-13	5.0e+14	2.2e-15	8.8e-15
1e-15	5.0e+15	2.4e-15	9.7e-15

Error of TSQR-HR on tall and skinny matrices (m = 1000, b = 200)

Numerical Experiments for Square Matrices

Matrix type	κ	$ A - QR _2$	$ I - Q^T Q _2$
A = 2 * rand(m) - 1	2.1 <i>e</i> +03	4.3e-15 (256)	2.8e-14 (2)
Golub-Klema-Stewart	2.2 <i>e</i> +20	0.0e+00 (2)	0.0e+00 (2)
Break 1 distribution	1.0 <i>e</i> +09	1.0e-14 (256)	2.8e-14 (2)
Break 9 distribution	1.0 <i>e</i> +09	9.9e-15 (256)	2.9e-14 (2)
$U\Sigma V^T$ with exponential distribution	4.2 <i>e</i> +19	2.0e-15 (256)	2.8e-14 (2)
The devil's stairs matrix	2.3 <i>e</i> +19	2.4e-15 (256)	2.8e-14 (2)
KAHAN matrix, a trapezoidal matrix	5.6 <i>e</i> +56	0.0e+00 (2)	0.0e+00 (2)
Matrix ARC130 from Matrix Market	6.0 <i>e</i> +10	8.8e-19 (16)	2.1e-15 (2)
Matrix FS_541_1 from Matrix Market	4.5 <i>e</i> +03	5.8e-16 (64)	1.8e-15 (256)
DERIV2: second derivative	1.2 <i>e</i> +06	2.8e-15 (256)	4.6e-14 (2)
FOXGOOD: severely ill-posed problem	5.7 <i>e</i> +20	2.4e-15 (256)	2.8e-14 (2)

Errors of CAQR-HR on square matrices (m = 1000). The numbers in parentheses give the panel width yielding largest error.